

VOLUME 2 | ISSUE 6 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

СОВЕРШЕНСТВОВАНИЕ МНОГОСТУПЕНЧАТОЙ И МНОГОСПЕКТРАЛЬНОЙ ГИС-ТЕХНОЛОГИИ ДЛЯ ОПТИМИЗАЦИИ МАРКШЕЙДЕРСКИХ РАБОТ ПРИ ПОДЗЕМНОЙ РАЗРАБОТКЕ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Б.Г. Азимов Г.С. Кутумова М.И. Равшанова Б. Эркинова

Ташкентский государственный технический университет

АННОТАЦИЯ

Совершенствована многоступенчатая и многоспектральная ГИСтехнология, способствующая оптимизацию маркшейдерских работ при подземной разработке месторождений полезных ископаемых.

Ключевые слова: совершенствование, ступенчатая, спектральная диапазон, ГИС-технология, оптимизация, маркшейдерское дело, подземная разработка, месторождение, полезные ископаемые.

ABSTRACT

A multi-stage and multi-spectral GIS technology has been improved, which contributes to the optimization of mine surveying in the underground mining of mineral deposits.

Keywords: improvement, stepped, spectral range, GIS technology, optimization, mine surveying, underground mining, deposit, minerals.

ВВЕДЕНИЕ

Оптимизация маркшейдерских работ при подземной разработке полезных ископаемых, которая является одним из основных опоров макроэкономики Республики в стратегии развития нового Узбекистана, во многом зависит от использования инновационной многоступенчатой и многоспектральной ГИСтехнологии.

В Ташкентском государственном техническом университете под руководством доц. Б.Г.Азимова была раработана теоретико-методологическая основа создания ГИС-технологии с 4 ступенчатой и 4 спектральным диапазоном в предмете «Рациональное и безопасное использование горнорудных ресурсов» [1].

VOLUME 2 | ISSUE 6 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

ОБСУЖДЕНИЕ И РЕЗУЛЬТАТЫ

При совершенствовании многоступенчатой и многоспектральной ГИСтехнологии для оптимизации маркшейдерских работ при подземной разработке месторождений полезных ископаемых, был выполнен следующий комплекс работ (таблица 1).

Во-первых, на основе статистического анализа геологической информативности 55 комплектов мелкого и 17 комплектов среднего масштабов многозональных космических сканерных изображений (КСИ) создан метод интерпретации многозональных дистанционных материалов, синхронной являющийся принципиально новым методом листанционных при исследованиях [2]. Он опирается на два существенных момента:

МНОГОСТУПЕНЧАТАЯ И МНОГОСПЕКТРАЛЬНАЯ ГИС-ТЕХНОЛОГИЯ В ПРОЦЕССЕ ОПТИМИЗАЦИИ МАРКШЕЙДЕРСКИХ РАБОТ ПРИ ПОДЗЕМНОЙ РАЗРАБОТКЕ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Таблица 1.

№ п/ п	Ступень и разрешающа я способность	0,5-0,6 мкм	0,6-0,7 мкм	0,7-0,8 мкм	0,8-1,1 мкм
1	2	3	4	5	6
2	I ступень, разрешающ ая способност ь 1000 м и выше	I-1-E I-1-D I-1-G I-1-A	I-2-E I-2-D I-2-G I-2-V I-2-B	I-3-E I-3-D I-3-G I-3-V I-3-B	I-4-E I-4-G I-4-V I-4-B
3	Примечан ие	I-1-A - Реальный мир; I-1-B - Цифровые модели местности; I-1-V – гидрография; I-1-G – космическая съемка; I-1-D – тематические карты (внешные элементы ландшафта) I-1-E – другие слои.	I-2-A - Реальный мир; I-2-В - Цифровые модели местности; I-2-V — гидрография; I-2-G — космическая съемка; I-2-D — тематические карты (внешные элементы ландшафта); I-2-E — другие слои.	I-3-A - Реальный мир; I-3-B - Цифровые модели местности; I-3-V – гидрография; I-3-G – космическая съемка; I-3-D – тематические карты (структурные карты неглубоко погруженной части фундамента); I-3-E – другие слои.	I-4-A - Реальный мир; I-4-В - Цифровые модели местности; I-4-V – гидрография; I-4-G – космическая съемка; I-4-D – тематические карты (геофизические карты структурные карты глубоко погруженной части фундамента); I-4-Е – другие слои.

VOLUME 2 | ISSUE 6 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

	1	T			
№ п/п	Ступень и разрешаю щая способнос			0,7-1,0 MKM	
1	2	3	4	5	6
4	II ступень, разреша ющая способн ость 300-350 м	II-1 II-1 II-1-	-G -V	II-2-E II-2-D II-2-G II-2-V II-2-B	
5	Примеча ние	II -1-А - Реальный мир; II -1-В - Цифровые модели местности; II -1-V – гидрография; II -1-G – космическая съемка; II -1-D – тематические карты (внешные элементы ландшафта); II -1-Е – другие слои.		II -2-А - Реальный мир; II -2-В - Цифровые модели местности; II -2-V - гидрография; II -2-G - космическая съемка; II -2-D - тематические карты (структурные карты неглубоко погруженной части фундамента); II -2-Е - другие слои.	
№ π/π	Ступен ь и разреш ающая способ ность	0,5-0,6 мкм	0,6-0,7 мкм	0,7-0,8 мкм	0,8-1,1 мкм
1	2	3	4	5	6
6	III ступен ь, разреш ающая способ ность 40-60 м	III-1-E III-1-D III-1-G III-1-V III-1-A	III	2-E III-3- 2-G III-3- 2-V III-3- 2-A III-3-	D III-4-D III-4-G V III-4-B III-4-A

786

VOLUME 2 | ISSUE 6 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

7	Приме чание	III -1-А - Реальный мир; III -1-В - Цифровые модели местности; III -1-V — гидрография; III -1-G — космическая съемка; III -1-D — тематические карты (внешные элементы ландшафта) III -1-Е — другие слои.	III -2-А - Реальный мир; III -2-В - Цифровые модели местности; III -2-V — гидрография; III -2-С — космическая съемка; III -2-D — тематические карты (внешные элементы ландшафта) III -2-Е — другие слои.	III -3-А - Реальный мир; III -3-В - Цифровые модели местности; III -3-V – гидрография; III -3-G – космическая съемка; III -3-D – тематические карты (структурные карты неглубоко погруженной части фундамента); III -3-Е – другие слои.	III -4-А - Реальный мир; III -4-В - Цифровые модели местности; III -4-V — гидрография; III -4-G — космическая съемка; III -4-D — тематические карты (геофизические карты структурные карты глубоко погруженной части фундамента); III -4-Е — другие слои.
5	Ступен ь и разреш ающая способ ность	0,5-0,6 мкм	0,6-0,7 мкм	0,7-0,8 мкм	0,8-1,1 мкм
1	2	3	4	5	6
8	IV ступен ь, разреш ающая способ ность до 1 м	IV-1-D IV-1-G IV-1-B IV-1-A	IV-2-E IV-2-D IV-2-G IV-2-A	IV-3-E IV-3-D IV-3-G IV-3-V	IV-4-D IV-4-D IV-4-D IV-4-D IV-4-D
9	Приме чание	IV -1-А - Реальный мир; IV -1-В - Цифровые модели местности; IV -1-V — гидрография; IV -1-G — космическая съемка; IV -1-D — тематические карты (внешные элементы ландшафта) IV -1-Е — другие слои.	IV -2-А - Реальный мир; IV -2-В - Цифровые модели местности; IV -2-V — гидрография; IV -2-G — космическая съемка; IV -2-D — тематические карты (внешные элементы ландшафта) IV -2-Е — другие слои.	IV -3-А - Реальный мир; IV -3-В - Цифровые модели местности; IV -3-V – гидрография; IV -3-G – космическая съемка; IV -3-D – тематические карты (структурные карты неглубоко погруженной части фундамента); IV -3-Е – другие слои.	IV -4-А - Реальный мир; IV -4-В - Цифровые модели местности; IV -4-V — гидрография; IV -4-G — космическая съемка; IV -4-D — тематические карты (геофизические карты структурные карты глубоко погруженной части фундамента); IV -4-Е — другие слои.

1) на КСИ диапазона спектра 0,5-0,7 мкм наиболее отчетливо вырисовываются фотоаномалии, полностью совпадающие с известными геолого-геоморфологическими объектами, по размерам превышающими разрешение снимка;

VOLUME 2 | ISSUE 6 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

2) на КСИ, выполненных в ближних инфракрасных частях спектра 0,8-1,1 мкм, выделяются фотоаномалии, по геолого-геофизическим данным совпадающие с контурами погребенных морфоструктур палеозойского фундамента и земной коры.

Во-вторых, применением синхронного метода интерпретации данных комплекта многозональных космоматериалов мелкого масштаба, базирующихся на результатах геоиндикационного и структурного дешифрирования, выяснено следующее [3].

Методом геоиндикационного анализа КСИ спектрального диапазона 0,5-0,7 мкм были определены контуры геоморфологической зональности ландшафта и приповерхностные геологические структуры, созданные альпийской (мезозой-эоценовое время) и, прежде всего, новейшей (олигоценнеоген-четвертичное время) геодинамической обстановкой сближения и столкновения Евразийского, Африканско-Аравийского и Индийско-Памирского континентов.

Методом структурного дешифрирования КСИ спектрального диапазона 0,8-1,1 мкм были выявлены слабо- и глубокопогруженные морфоструктуры фундамента. Слабопогруженные участки фундамента обычно совпадают со склонами горно-складчатых систем и выделяются широкими зонами темносерого фототона сглаженным рисунком фотоизображения. Глубокопогруженные участки фундамента располагаются пределах активизированных участков литосферных плит и орогенных межгорных впадин. Они формируют крупные площадные космоструктуры овальной и кольцевой конфигурации. На этих КСИ также прослежены одиночные палеорифтовые постройки пермо-триасового и юрского этапов геодинамического развития региона в виде протяженных и узких линеаментных зон темно-серого фототона. Палеовпадины и синеклизы мезозоя на космоматериалах дешифрируются тройным сочленением линеаментных зон.

В-третьих, был создан унифицированный фототонометр, позволяющий плотность фототонов количественно измерять комплектах многоспектральных космических изображений [4-5]. В результате были разработаны спектральные образы геологических и природных объектов, спектральные классификаторы фотоаномалий, используемых при поиске полезных ископаемых, a также усовершенствованы основные традиционной дешифровки, т.е. контрастно-аналоговый, структурный иландшафтно-индикативный методы дешифрирования [5].

В целом, совершенствование многоступенчатой и многоспектральной ГИС-технологии для оптимизации маркшейдерских работ при подземной

VOLUME 2 | ISSUE 6 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

разработке месторождений полезных ископаемых, опирается также на методы одновременного дешифрирования и интерпретации именно многоспектральных (4 спектральных диапазона, таблица 1 графы 3-6) и разномасштабных (4 ступенчатой, таблица 1 графа 2, строки 2,4,6 и 8) дистанционных материалов.

Следует отметить, что при исследовании и картировании четвертичных геоморфологических, отложений, географических, ландшафтных топографических объектов, к которым относятся тематические карты: І-1-D, І-2-D (таблица, строка 3, графы 3 и 4), II -1-D (таблица, строка 5, графа 3), III -1-D и III -2-D (таблица, строка 7, графы 3 и 4), IV -1-D и IV -2-D (таблица, строка 9. высокоэффективным графы 4), использование является четырехступенчатой ГИС-технологии с использованием космических снимков, выполненных в видимой части спектрального диапазона (каналы 1 и 2).

В ГИС-технологии, которая применяется в процессе геофизических, тектонических и геодинамических исследований и решения задач, связанных с этой областью, т.е. тематических карт, которые отражают геофизические аномалий, а также структурных карт глубоко погруженной части фундамента: I-4-D (таблица, строка 3, графа 6), III-4-D (таблица, строка 7, графа 6), IV-4-D (таблица, строка 9, графа 6), наиболее эффективным являются космические снимки, выполненные в ближней инфракрасной части спектрального диапазона (4 канал).

работах [4-6] отмечено, ЧТО на каждой ступенчатой уровне генерализации многоспектральных космических снимков создаются спектральные образы, позволяющие определить состав и метаморфические геологических И природных объектов, входящих месторождений и прилегающих территорий. А состав и метаморфические свойства каждого геологического и природного объекта контролируют геоморфологических особенностей глубинных разломов и различных трещин земли, образующихся в результате воздействия на них тектонических и геодинамических сил.

Кроме того, на космических снимках, выполненных в ближней инфракрасной части спектральных диапазонов, под чехлом мезо-кайнозойских толщ просвечиваются морфоструктуры палеозойских отложений, а также фотоаномиалы, которые отражают содержащиеся в них полезные руды. Тектоническая и геодинамическая информативность этого спектрального диапазона значительно выше. На космических снимках мелкого масштаба дешифрируются наиболее крупные космоструктуры (таблица, строка 2, графа 6, I-4-G), в том числе трансконтинентальные линеаменты и мегазоны, на космических снимках среднего масштаба (таблица, строка 4, графа 5, II -2-G),

VOLUME 2 | ISSUE 6 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

прослеживаются глобальные и региональные глубинные разломы и трещины, а на космических снимках крупного (таблица, строка 6, графа 6, III -4-G) и сверхкрупного масштаба (таблица, строка 8, графа 6, IV - 4-G) представлены локальные разломы и трещены.

ЗАКЛЮЧЕНИЕ

Глубинные разломы и трещины различного типа, отраженные на этих космических материалах, формируют основные негативные факторы, сильно влияющим на рациональное и безопасное использование горнорудных ресурсов. Этот вывод объясняется следующим образом.

Во-первых, глубинные разломы и трещины резко снижают прочности геологических отложений месторождений и прилегающих территории, в результате при проходке шахт и т.д. требуются большой объем укрепительных работ.

Во-вторых, газы и углеводороды, которые поднимаются по глубиным разломам и трещинам, накапливаются в шахтах, превращая геологические проходки в объекты с высоким риском горения и взрыва и значительно снижают степень рационального и безопасного использования горнорудных ресурсов.

В третьих глубинные разломы и трещины способствуют накоплению грунтовых вод и атмосферных осадков в шахтах, что приводит к возникновению явлений водяного давления и обвала в объектах, где осуществляется геологический переход, в результате чего резко затрудняется возможность рационального и безопасного использования горнорудных ресурсов.

Таким образом, процесс совершенствования многоступенчатой и многоспектральной ГИС-технология, способствующая оптимизацию маркшейдерских работ при подземной разработке месторождений полезных ископаемых, должен опираться на космические снимки четырехступенчатой генерализации и 4-мя спектральными диапазонами.

REFERENCES

1. Азимов Б.Г., Махмадиев Д.Р., Қувонов Н.Х., Улмасов Ж.И., Хамидов З.А. Теоретико-методологические основы создания ГИС-технологии с 4 ступенчатой и 4 спектральным диапазоном в предмете «Рациональное и безопасное использование горнорудных ресурсов // XXXVI Международная научно-практическая конференция "Advances in science and technology".—Москва, 2021, 108-110 с.

VOLUME 2 | ISSUE 6 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

- 2. Азимов Б.Г. Применение аэрокосмических изображение в структурногеологических исследованиях // Автор, дисс. на соис. уч. степ.канд. геол-мин. наук. М., 1988. –21 С.
- 3. Азимов Б.Г. Относительная геологическая информативность мелкомасштабных многозональных космических изображений (на примере Ферганской впадины и ее горного обрамления) // Исследование Земли из космоса"1984, №3, Москва с. 44-49.
- 4. Азимов Б.Г., Абидханов А., Ботирова Н.У., Тургунбаев А. Унифицированный фототонометр как основа при составлении спектральных геологических образов и классификаторов площадей полезных ископаемых // Международная научно-практическая Конференция «ИННОВАЦИЯ-2017». Сборник статей / Т. Изд. «Навруз». с. 204-205.
- 5. Азимов Б.Г., Сулаймонов Х.О., Хужамбердиев Д.Т., Ниязметов Х.З. и др. Методика определения спектральных геологических образов и образов фотоаномалий нефтяных и газовых месторождений (на примере Ферганской нефтегазоносной области) // Респ. межв. сборник. Актуальные вопросы в области технических и социально-экономических наук. –Т.: 2013. –С.315-316.
- Расулов A.X. 6. Азимов Б.Г., Жавлиев Ю.Ж., Унифицированный поисковых фототонометр разработки спектральных как основа ДЛЯ классификаторов рудных и нерудных месторождений. CENTRAL ASIAN ACADEMIC JOURNAL OF SCIENTIFIC RESEARCH. ISSN: 2181-2489 VOLUME 2 | ISSUE 5 | 2022. p.356-364.