

# СОВЕРШЕНСТВОВАНИЕ МНОГОСТУПЕНЧАТОЙ И МНОГОСПЕКТРАЛЬНОЙ ГИС-ТЕХНОЛОГИИ ДЛЯ ОПТИМИЗАЦИИ МАРКШЕЙДЕРСКИХ РАБОТ ПРИ ПОДЗЕМНОЙ РАЗРАБОТКЕ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Б.Г. Азимов Г.С. Кутумова М.И. Равшанова Б. Эркинова

Ташкентский государственный технический университет

#### АННОТАЦИЯ

Совершенствована многоступенчатая и многоспектральная ГИСтехнология, способствующая оптимизацию маркшейдерских работ при подземной разработке месторождений полезных ископаемых.

Ключевые слова: совершенствование, ступенчатая, спектральная диапазон, ГИС-технология, оптимизация, маркшейдерское дело, подземная разработка, месторождение, полезные ископаемые.

#### ABSTRACT

A multi-stage and multi-spectral GIS technology has been improved, which contributes to the optimization of mine surveying in the underground mining of mineral deposits.

*Keywords: improvement, stepped, spectral range, GIS technology, optimization, mine surveying, underground mining, deposit, minerals.* 

#### введение

Оптимизация маркшейдерских работ при подземной разработке полезных ископаемых, которая является одним из основных опоров макроэкономики Республики в стратегии развития нового Узбекистана, во многом зависит от использования инновационной многоступенчатой и многоспектральной ГИСтехнологии.

В Ташкентском государственном техническом университете под руководством доц. Б.Г.Азимова была раработана теоретико-методологическая основа создания ГИС-технологии с 4 ступенчатой и 4 спектральным диапазоном в предмете «Рациональное и безопасное использование горнорудных ресурсов» [1].



## ОБСУЖДЕНИЕ И РЕЗУЛЬТАТЫ

При совершенствовании многоступенчатой и многоспектральной ГИСтехнологии для оптимизации маркшейдерских работ при подземной разработке месторождений полезных ископаемых, был выполнен следующий комплекс работ (таблица 1).

Во-первых, на основе статистического анализа геологической информативности 55 комплектов мелкого и 17 комплектов среднего масштабов многозональных космических сканерных изображений (КСИ) создан метод интерпретации многозональных дистанционных материалов, синхронной являюшийся принципиально новым методом листанционных при исследованиях [2]. Он опирается на два существенных момента:

МНОГОСТУПЕНЧАТАЯ И МНОГОСПЕКТРАЛЬНАЯ ГИС–ТЕХНОЛОГИЯ В ПРОЦЕССЕ ОПТИМИЗАЦИИ МАРКШЕЙДЕРСКИХ РАБОТ ПРИ ПОДЗЕМНОЙ РАЗРАБОТКЕ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Таблина 1.

|              |                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                           | таолица п                                                                                                                                                                                                                                                                         |
|--------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| №<br>п/<br>п | Ступень и<br>разрешающа<br>я<br>способность                       | 0,5-0,6 мкм                                                                                                                                                                                                             | 0,6-0,7 мкм                                                                                                                                                                                                                    | 0,7-0,8 мкм                                                                                                                                                                                                                                               | 0,8-1,1 мкм                                                                                                                                                                                                                                                                       |
| 1            | 2                                                                 | 3                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                 |
| 2            | I ступень,<br>разрешающ<br>ая<br>способност<br>ь 1000 м и<br>выше | I-1-E<br>I-1-D<br>I-1-D<br>I-1-G<br>I-1-A                                                                                                                                                                               | I-2-P<br>I-2-D<br>I-2-Q<br>I-2-W<br>I-2-B<br>I-2-A                                                                                                                                                                             | I-3-E<br>I-3-D<br>I-3-G<br>I-3-V<br>I-3-B<br>I-3-B                                                                                                                                                                                                        | I4-E<br>I4-D<br>I4-D<br>I4-G<br>I4-W<br>I4-B<br>I4-A                                                                                                                                                                                                                              |
| 3            | Примечан<br>ие                                                    | I-1-А - Реальный<br>мир;<br>I-1-В - Цифровые<br>модели местности;<br>I-1-V – гидрография;<br>I-1-G – космическая<br>съемка;<br>I-1-D – тематические<br>карты (внешные<br>элементы<br>ландшафта)<br>I-1-E – другие слои. | I-2-А - Реальный<br>мир;<br>I-2-В - Цифровые<br>модели местности;<br>I-2-V –<br>гидрография;<br>I-2-G – космическая<br>съемка;<br>I-2-D –<br>тематические<br>карты (внешные<br>элементы<br>ландшафта);<br>I-2-E – другие слои. | I-3-А - Реальный<br>мир;<br>I-3-В - Цифровые<br>модели местности;<br>I-3-V – гидрография;<br>I-3-G – космическая<br>съемка;<br>I-3-D – тематические<br>карты (структурные<br>карты неглубоко<br>погруженной части<br>фундамента);<br>I-3-E – другие слои. | I-4-А - Реальный<br>мир;<br>I-4-В - Цифровые<br>модели местности;<br>I-4-V – гидрография;<br>I-4-G – космическая<br>съемка;<br>I-4-D – тематические<br>карты<br>(геофизические<br>карты, структурные<br>карты глубоко<br>погруженной части<br>фундамента);<br>I-4-E – лругие слои |



#### VOLUME 2 | ISSUE 6 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

|   | №<br>п/п   | лень и<br>решаю<br>щая                                                | 5-0,7<br>MKM                                                                                                                                                                                                                   |                      | 7-1,0<br>МКМ                                                                                                                                                                                                                                                                                       |             |
|---|------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|   | 11/11      | CTy<br>2a3]<br>1                                                      | Ó                                                                                                                                                                                                                              |                      | 0,                                                                                                                                                                                                                                                                                                 |             |
|   | 1          |                                                                       |                                                                                                                                                                                                                                | 4                    |                                                                                                                                                                                                                                                                                                    | (           |
|   | I          | 2                                                                     | 3                                                                                                                                                                                                                              | 4                    | 5                                                                                                                                                                                                                                                                                                  | 6           |
|   | 4          | II<br>ступень,<br>разреша<br>ющая<br>способн<br>ость<br>300-<br>350 м |                                                                                                                                                                                                                                | -E<br>-D<br>-V<br>-B | II-2-E<br>II-2-D<br>II-2-G<br>II-2-V<br>II-2-A                                                                                                                                                                                                                                                     |             |
|   | 5          | Примеча<br>ние                                                        | II -1-А - Реальный мир;<br>II -1-В - Цифровые<br>модели местности;<br>II -1-V – гидрография;<br>II -1-G – космическая<br>съемка;<br>II -1-D – тематические<br>карты (внешные<br>элементы ландшафта);<br>II -1-Е – другие слои. |                      | <ul> <li>II -2-А - Реальный мир;</li> <li>II -2-В - Цифровые модели местности;</li> <li>II -2-V – гидрография;</li> <li>II -2-G – космическая съемка;</li> <li>II -2-D – тематические карты (структурные карты неглубоко погруженной части фундамента);</li> <li>II -2-Е – другие слои.</li> </ul> |             |
| I | Ma         | C                                                                     | 0506                                                                                                                                                                                                                           | 0 6 0 7              | 0709                                                                                                                                                                                                                                                                                               | 0011        |
|   | ум⊵<br>п/п | ьи                                                                    | 0,3-0,0 MKM                                                                                                                                                                                                                    | 0,0-0,/ MKM          | 0,7-0,8 MKM                                                                                                                                                                                                                                                                                        | U,0-1,1 MKM |
|   | 11/11      | разреш                                                                |                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                    |             |
|   |            | ающая                                                                 |                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                    |             |
|   |            | способ                                                                |                                                                                                                                                                                                                                |                      |                                                                                                                                                                                                                                                                                                    |             |
|   | 1          | ность                                                                 | 2                                                                                                                                                                                                                              |                      |                                                                                                                                                                                                                                                                                                    |             |
|   | 1          | 2                                                                     | 3                                                                                                                                                                                                                              | 4                    | 5                                                                                                                                                                                                                                                                                                  | 6           |
|   | 6          |                                                                       | - Bay                                                                                                                                                                                                                          | in the               | Se Set                                                                                                                                                                                                                                                                                             | in Say      |



786

June 2022



#### VOLUME 2 | ISSUE 6 ISSN 2181-1784 SJIF 2022: 5.947 ASI Factor = 1.7

| 7 | чание                                                              | III -1-А - Реальный мир;<br>III -1-В - Цифровые<br>модели местности;<br>III -1-V – гидрография;<br>III -1-G – космическая<br>съемка;<br>III -1-D – тематические<br>карты (внешные<br>элементы ландшафта)<br>III -1-Е – другие слои. | III -2-А - Реальный<br>мир;<br>III -2-В - Цифровые<br>модели местности;<br>III -2-V – гидрография;<br>III -2-G – космическая<br>съемка;<br>III -2-D – тематические<br>карты (внешные<br>элементы ландшафта)<br>III -2-Е – другие слои. | <ul> <li>III -3-А - Реальный мир;</li> <li>III -3-В - Цифровые<br/>модели местности;</li> <li>III -3-V – гидрография;</li> <li>III -3-G – космическая<br/>съемка;</li> <li>III -3-D – тематические<br/>карты (структурные<br/>карты неглубоко<br/>погруженной части<br/>фундамента);</li> <li>III -3-Е – другие слои.</li> </ul> | III -4-А - Реальный<br>мир;<br>III -4-В - Цифровые<br>модели местности;<br>III -4-V –<br>гидрография;<br>III -4-G – космическая<br>съемка;<br>III -4-D –<br>тематические карты<br>(геофизические<br>карты, структурные<br>карты глубоко<br>погруженной части<br>фундамента);<br>III -4-Е – другие слои. |
|---|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Ступен<br>ь и<br>разреш<br>ающая<br>способ<br>ность                | 0,5-0,6 мкм                                                                                                                                                                                                                         | 0,6-0,7 мкм                                                                                                                                                                                                                            | 0,7-0,8 мкм                                                                                                                                                                                                                                                                                                                      | 0,8-1,1 мкм                                                                                                                                                                                                                                                                                             |
| 1 | 2                                                                  | 3                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                       |
| δ | IV<br>ступен<br>ь,<br>разреш<br>ающая<br>способ<br>ность<br>до 1 м | IV-1-E<br>IV-1-D<br>IV-1-D<br>IV-1-G<br>IV-1-V<br>IV-1-A                                                                                                                                                                            | IV-2-E<br>IV-2-D<br>IV-2-Q<br>IV-2-W<br>IV-2-B<br>IV-2-A                                                                                                                                                                               | IV-3-E<br>IV-3-C<br>IV-3-C<br>IV-3-C<br>IV-3-V<br>IV-3-B                                                                                                                                                                                                                                                                         | IV-4.<br>IV-4.<br>IV-4.<br>IV-4.<br>IV-4.                                                                                                                                                                                                                                                               |
| 9 | Приме<br>чание                                                     | IV -1-А - Реальный мир;<br>IV -1-В - Цифровые<br>модели местности;<br>IV -1-V – гидрография;<br>IV -1-G – космическая<br>съемка;<br>IV -1-D – тематические<br>карты (внешные<br>элементы ландшафта)<br>IV -1-Е – другие слои.       | IV -2-А - Реальный<br>мир;<br>IV -2-В - Цифровые<br>модели местности;<br>IV -2-V – гидрография;<br>IV -2-G – космическая<br>съемка;<br>IV -2-D – тематические<br>карты (внешные<br>элементы ландшафта)<br>IV -2-Е – другие слои.       | <ul> <li>IV -3-А - Реальный мир;</li> <li>IV -3-В - Цифровые<br/>модели местности;</li> <li>IV -3-V – гидрография;</li> <li>IV -3-G – космическая<br/>съемка;</li> <li>IV -3-D – тематические<br/>карты (структурные<br/>карты неглубоко<br/>погруженной части<br/>фундамента);</li> <li>IV -3-E – другие слои.</li> </ul>       | IV -4-А - Реальный<br>мир;<br>IV -4-В - Цифровые<br>модели местности;<br>IV -4-V –<br>гидрография;<br>IV -4-G –<br>космическая съемка;<br>IV -4-D –<br>тематические карты<br>(геофизические<br>карты, структурные<br>карты глубоко<br>погруженной части<br>фундамента);<br>IV -4-E – другие слои.       |

1) на КСИ диапазона спектра 0,5-0,7 мкм наиболее отчетливо вырисовываются фотоаномалии, полностью совпадающие с известными геолого-геоморфологическими объектами, по размерам превышающими разрешение снимка;

787

June 2022



2) на КСИ, выполненных в ближних инфракрасных частях спектра 0,8-1,1 мкм, выделяются фотоаномалии, по геолого-геофизическим данным совпадающие с контурами погребенных морфоструктур палеозойского фундамента и земной коры.

**Во-вторых,** применением синхронного метода интерпретации данных комплекта многозональных космоматериалов мелкого масштаба, базирующихся на результатах геоиндикационного и структурного дешифрирования, выяснено следующее [3].

Методом геоиндикационного анализа КСИ спектрального диапазона 0,5-0.7 были определены контуры геоморфологической МКМ зональности геологические ландшафта приповерхностные структуры, И созданные альпийской (мезозой-эоценовое время) и, прежде всего, новейшей (олигоценнеоген-четвертичное время) геодинамической обстановкой сближения и столкновения Евразийского, Африканско-Аравийского и Индийско-Памирского континентов.

Методом структурного дешифрирования КСИ спектрального диапазона 0,8-1,1 мкм были выявлены слабо- и глубокопогруженные морфоструктуры фундамента. Слабопогруженные участки фундамента обычно совпадают со склонами горно-складчатых систем и выделяются широкими зонами темносерого фототона сглаженным рисунком фотоизображения. И Глубокопогруженные участки фундамента располагаются В пределах активизированных участков литосферных плит и орогенных межгорных впадин. Они формируют крупные площадные космоструктуры овальной и кольцевой конфигурации. На этих КСИ также прослежены одиночные палеорифтовые постройки пермо-триасового и юрского этапов геодинамического развития региона в виде протяженных и узких линеаментных зон темно-серого фототона. Палеовпадины и синеклизы мезозоя на космоматериалах дешифрируются тройным сочленением линеаментных зон.

В-третьих, был создан унифицированный фототонометр, позволяющий плотность фототонов количественно измерять В комплектах многоспектральных космических изображений [4-5]. В результате были разработаны спектральные образы геологических и природных объектов, спектральные классификаторы фотоаномалий, используемых при поиске полезных ископаемых, a также усовершенствованы основные методы традиционной дешифровки, т.е. контрастно-аналоговый, структурный иландшафтно-индикативный методы дешифрирования [5].

В целом, совершенствование многоступенчатой и многоспектральной ГИС-технологии для оптимизации маркшейдерских работ при подземной



разработке месторождений полезных ископаемых, опирается также на методы одновременного дешифрирования и интерпретации именно многоспектральных (4 спектральных диапазона, таблица 1 графы 3-6) и разномасштабных (4 ступенчатой, таблица 1 графа 2, строки 2,4,6 и 8) дистанционных материалов.

Следует отметить, что при исследовании и картировании четвертичных геоморфологических, отложений, географических, ландшафтных И топографических объектов, к которым относятся тематические карты: I-1-D, I-2-D (таблица, строка 3, графы 3 и 4), II -1-D (таблица, строка 5, графа 3), III -1-D и III -2-D (таблица, строка 7, графы 3 и 4), IV -1-D и IV -2-D (таблица, строка 9. высокоэффективным графы 4). использование 3 И является четырехступенчатой ГИС-технологии с использованием космических снимков, выполненных в видимой части спектрального диапазона (каналы 1 и 2).

В ГИС-технологии, которая применяется в процессе геофизических, тектонических и геодинамических исследований и решения задач, связанных с этой областью, т.е. тематических карт, которые отражают геофизические аномалий, а также структурных карт глубоко погруженной части фундамента: I-4-D (таблица, строка 3, графа 6), III-4-D (таблица, строка 7, графа 6), IV-4-D (таблица, строка 9, графа 6), наиболее эффективным являются космические снимки, выполненные в ближней инфракрасной части спектрального диапазона (4 канал).

В работах [4-6] отмечено, ЧТО на каждой ступенчатой уровне генерализации многоспектральных космических снимков создаются спектральные образы, позволяющие определить состав и метаморфические свойства геологических И природных объектов, входящих в состав месторождений и прилегающих территорий. А состав и метаморфические свойства каждого геологического и природного объекта контролируют геоморфологических особенностей глубинных разломов и различных трещин земли, образующихся в результате воздействия на них тектонических и геодинамических сил.

Кроме того, на космических снимках, выполненных в ближней инфракрасной части спектральных диапазонов, под чехлом мезо-кайнозойских толщ просвечиваются морфоструктуры палеозойских отложений, а также фотоаномиалы, которые отражают содержащиеся в них полезные руды. Тектоническая и геодинамическая информативность этого спектрального диапазона значительно выше. На космических снимках мелкого масштаба дешифрируются наиболее крупные космоструктуры (таблица, строка 2, графа 6, I-4-G), в том числе трансконтинентальные линеаменты и мегазоны, на космических снимках среднего масштаба (таблица, строка 4, графа 5, II -2-G),



прослеживаются глобальные и региональные глубинные разломы и трещины, а на космических снимках крупного (таблица, строка 6, графа 6, III -4-G) и сверхкрупного масштаба (таблица, строка 8, графа 6, IV - 4-G) представлены локальные разломы и трещены.

# ЗАКЛЮЧЕНИЕ

Глубинные разломы и трещины различного типа, отраженные на этих космических материалах, формируют основные негативные факторы, сильно влияющим на рациональное и безопасное использование горнорудных ресурсов. Этот вывод объясняется следующим образом.

**Во-первых,** глубинные разломы и трещины резко снижают прочности геологических отложений месторождений и прилегающих территории, в результате при проходке шахт и т.д. требуются большой объем укрепительных работ.

**Во-вторых,** газы и углеводороды, которые поднимаются по глубиным разломам и трещинам, накапливаются в шахтах, превращая геологические проходки в объекты с высоким риском горения и взрыва и значительно снижают степень рационального и безопасного использования горнорудных ресурсов.

**В третьих** глубинные разломы и трещины способствуют накоплению грунтовых вод и атмосферных осадков в шахтах, что приводит к возникновению явлений водяного давления и обвала в объектах, где осуществляется геологический переход, в результате чего резко затрудняется возможность рационального и безопасного использования горнорудных ресурсов.

Таким образом, процесс совершенствования многоступенчатой и многоспектральной ГИС-технология, способствующая оптимизацию маркшейдерских работ при подземной разработке месторождений полезных ископаемых, должен опираться на космические снимки четырехступенчатой генерализации и 4-мя спектральными диапазонами.

## REFERENCES

1. Азимов Б.Г., Махмадиев Д.Р., Кувонов Н.Х., Улмасов Ж.И., Хамидов З.А. ГИС-технологии Теоретико-методологические основы создания с 4 ступенчатой и 4 спектральным диапазоном в предмете «Рациональное и безопасное использование горнорудных ресурсов // XXXVI Международная *"Advances"* научно-практическая конференция in science and *technology*".-Москва, 2021, 108-110 с.



2. Азимов Б.Г. Применение аэрокосмических изображение в структурногеологических исследованиях // Автор, дисс. на соис. уч. степ.канд. геол-мин. наук. М., 1988. –21 С.

3. Азимов Б.Г. Относительная геологическая информативность мелкомасштабных многозональных космических изображений (на примере Ферганской впадины и ее горного обрамления) // Исследование Земли из космоса"1984, №3, Москва с. 44-49.

4. Азимов Б.Г., Абидханов А., Ботирова Н.У., Тургунбаев А. Унифицированный фототонометр как основа при составлении спектральных геологических образов и классификаторов площадей полезных ископаемых // Международная научно-практическая Конференция «ИННОВАЦИЯ-2017». Сборник статей / – Т. Изд. «Навруз». с. 204-205.

5. Азимов Б.Г., Сулаймонов Х.О., Хужамбердиев Д.Т., Ниязметов Х.З. и др. Методика определения спектральных геологических образов и образов фотоаномалий нефтяных и газовых месторождений (на примере Ферганской нефтегазоносной области) // Респ. межв. сборник. Актуальные вопросы в области технических и социально-экономических наук. –Т.: 2013. –С.315-316.

Расулов A.X. 6. Азимов Б.Г., Жавлиев Ю.Ж., Унифицированный поисковых фототонометр разработки спектральных как основа для классификаторов рудных и нерудных месторождений. CENTRAL ASIAN ACADEMIC JOURNAL OF SCIENTIFIC RESEARCH. ISSN: 2181-2489 VOLUME 2 | ISSUE 5 | 2022. p.356-364.