

РЕШЕНИЕ УРАВНЕНИЯ ШРЕДИНГЕРА ДЛЯ ПОТЕНЦИАЛЬНОЙ ЯМЕ ПРЯМОУГОЛЬНОЙ ФОРМЫ

Ахмедов Баходир Бахромович, Хошимов Хусанбой Анваржон угли, Зокиров Адхам Илхомжон угли Ферганский государственный университет, преподаватели кафедры физики

АННОТАЦИЯ

Важной составляющей современной физики полупроводников является относительно новое, активно развивающееся направление – физика низкоразмерных систем. В этой статье мы изучаем одну из основных низкоразмерных систем – квантовые ямы.

Ключевые слова: Потенциалная яма, энергетическая зона, полупроводник.

ABSTRACT

An important component of modern semiconductor physics is a relatively new, actively developing direction - the physics of low-dimensional systems. This article studies one of the main low-dimensional systems - quantum wells.

Keywords: Potential well, energy zone, semiconductor

введение

Наиболее простым примером структуры с квантовой ямой служит тонкая проводящая пленка (рис.1, а). Поскольку носители заряда (электроны в зоне проводимости) движутся внутри пленки, не покидая ее, естественно рассматривать область пространства, занятую пленкой, как потенциальную яму с высотой стенок, равной работе выхода электронов (порядка нескольких эВ). Толщина *L*, такой ямы совпадает с толщиной пленки.

Другой пример - МДП-структура, представляющая собой систему слоев «металл-диэлектрик-полупроводник», где для электронов в поверхностной области полупроводника, граничащей с диэлектриком, образуется потенциальная яма, обусловленная изгибом дна зоны проводимости под действием приложенного извне электрического напряжения (рис.1, б). В этом случае потенциальный рельеф ямы легко изменять, управляя разностью потенциалов между металлическим и полупроводниковым электродами. Еще один пример (рис.1, *в*), по своему характеру близкий к первому, - двойной гетеропереход, в котором тонкий слой полупроводника с относительно малой

942

запрещенной зоной (узкозонный материал) с обеих сторон окружен толстыми большей величиной слоями полупроводника с запрещенной зоны (широкозонный материал). В рассматриваемом примере слой узкозонного потенциальной ямой для электронов; материала является высота ee энергетических барьеров определяется разрывом зон - разностью уровней дна зоны проводимости в граничащих друг с другом полупроводниках. Для дырок в узкозонном материале также существует потенциальная яма; ее рельеф обусловлен разрывами края валентной зоны. Изменяя количество слоев, их толщину и состав, можно с успехом управлять формой потенциального рельефа, концентрацией носителей заряда в квантовых ямах и другими физическими характеристиками гетероструктур.

Рис.1. Примеры квантовых ям.

a - прямоугольная потенциальная яма с барьерами конечной высоты для электронов в тонкой проводящей пленке; схематично показаны уровни энергии E_n , обусловленные размерным квантованием в направлении, перпендикулярном плоскости пленки; δ - энергетическая диаграмма МДПструктуры Al-SiO₂-p-Si с положительным потенциалом на металлическом электроде; области, занятые электронами, на этом рисунке выделены темным цветом; ϵ - энергетическая диаграмма двойного гетероперехода, состоящего из материалов A и B. Материал B с большей запрещенной зоной Eg,B является барьером для носителей заряда в материале A с меньшей запрещенной зоной $E_{g,A}$.

Обратимся к примерам количественного анализа энергетического спектра и волновых функций электронов в прямоугольных потенциальных моделях квантовых ям.

April 2022

ОБСУЖДЕНИЕ

Если характерные значения энергии электронов в квантовой яме малы по сравнению с величиной энергетических барьеров, то для простоты можно считать барьеры бесконечно высокими. Вне ямы, в области бесконечных потенциальных барьеров, волновая функция электрона f(r) должна быть равна нулю. Внутри ямы волновая функция, описывающая стационарное состояние с энергией E, удовлетворяет уравнению Шредингера

 $-\frac{\hbar^2}{2m}\nabla^2 f\left(\vec{r}\right) + U\left(\vec{r}\right)f\left(\vec{r}\right) \tag{1}$

с потенциалом U(r), характеризующим рельеф края зоны проводимости в квантовой яме. Говоря более строго, здесь f(r) - не вся волновая функция, а только огибающая блоховской волновой функции электрона в кристалле.[1-4]

В простейшей модели, с потенциальным рельефом прямоугольной формы, потенциал $U(\mathbf{r})$ внутри ямы равен постоянной величине E_c - это уровень края зоны проводимости в рассматриваемом полупроводниковом материале. Пусть, кроме того, образец полупроводника имеет вид прямоугольного параллелепипеда с ребрами длиной L_x, L_y, L_z . Тогда решение уравнения Шредингера (1) легко получить методом разделения переменных в декартовых координатах.

Действительно, будем искать волновую функцию стационарного состояния $f(\mathbf{r})$ в форме произведения трех неизвестных функций, каждая из которых зависит только от одной из координатных переменных x, y, z:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(z)}{dz^2} = E^{(z)}\psi(z), \qquad (2)$$

Частные решения уравнения (2) можно выбрать в виде двух плоских волн с противоположными знаками импульса $\hbar k_z$ Тогда общее решение запишется в виде

$$\psi(z) = A \exp(ik_z z) + B \exp(-ik_z z), \quad (3)$$

где коэффициенты *A*, *B* и z-компонента волнового вектора k_z пока представляют собой произвольные постоянные. Функция (3) удовлетворяет уравнению (2), если справедливо равенство

$$E^{(z)} = \frac{\hbar^2 k_z^2}{2m}.$$
 (4)

April 2022

944

РЕЗУЛЬТАТЫ

Учтем теперь требование непрерывности решений уравнения Шредингера. Происхождение такого требования можно пояснить следующим образом. Если потенциал $U(\vec{r})$ в уравнении (1) конечен, то конечными будут также члены $U(\vec{r})f(\vec{r})$ и $Ef(\vec{r})$. Тогда уравнение (1) может быть верным равенством лишь с конечными вторыми производными волновой функции, входящими в $\nabla^2 f$, а для этого необходима непрерывность первых производных. В свою очередь, для существования непрерывных первых производных функции $f(\vec{r})$ требуется непрерывность самой $f(\vec{r})$ (поскольку производная функции стремится к бесконечности там, где функция испытывает скачок). Таким образом, если потенциал в уравнении Шредингера (1) конечен, то волновая функция и ее первые производные должны быть непрерывными. Но если высота стенок потенциальной ямы стремится к бесконечности,

требование конечности $\nabla^2 f$ на стенках ямы снимается. В этом случае первые производные волновой функции будут на стенках ямы испытывать скачок, и сохраняется только свойство непрерывности самой волновой функции (2).

Вне квантовой ямы f=0, поэтому на стенках ямы (при z=0 и $z=L_z$) волновая функция $\psi(z)$ непрерывно обращается в нуль:

$$\psi(0) = 0, \qquad \psi(L_z) = 0$$
 (5)

Первое из граничных условий (5) ведет к тому, что в выражении (3) B = -A, так что волновую функцию (3) можно представить в виде

 $\psi(z) = C\sin(k_z z), \quad (6)$

где $C \neq 0$ - произвольный нормировочный множитель. Тогда второе из двух условий (5) приводит к уравнению для z-компоненты волнового вектора,

 $\sin\left(k_z L_z\right) = 0 \quad (7)$

и тем самым к ее квантованию:

$$k_z = \frac{\pi}{L_z} n_z, \qquad n_z = 1, 2, 3, ...,$$
 (8)

ЗАКЛЮЧЕНИЕ

В формуле (8) учитываются только те значения квантового числа *nz*, которым отвечает набор линейно независимых функций (6) (значения 0, -1, -2,...

April 2022

отброшены). Подстановка (8) в (4) дает выражение для уровней энергии, соответствующих движению электрона вдоль оси z:

$$E_{n_z}^{(z)} = \frac{\pi^2 \hbar^2}{2mL_z^2} n_z^2, \qquad n_z = 1, 2, 3, ...,$$
(9)

Здесь и далее мы будем считать, что ось z выбрана в направлении, поперечном к плоскости квантовой ямы, так что именно в этом направлении реализуется размерное квантование энергии, характеризующееся неравенством (1.2).

REFERENCES

1. Rasulov, R. Y., Akhmedov, B. B., Muminov, I. A., & Umarov, B. B. (2021). Crystals with tetrahedral and hexagonal lattices. Fergana. Classic.-2021.

2. Ахмедов, Б. Б. (2020). МЕТОД КР-ВОЗМУЩЕНИЙ С УЧЕТОМ ВЫРОЖДЕНИЯ. In Наука и современное общество: актуальные вопросы, достижения и инновации (pp. 21-25).

3. Ахмедов, Б. Б. (2020). УРАВНЕНИЕ ШРЕДИНГЕРА ДЛЯ ВОЛНОВЫХ ФУНКЦИЙ БЛОХА. In Научный форум: технические и физико-математические науки (pp. 20-25).

4. Ахмедов, Б., Муминов, И., & Хомиджонов, Д. (2021). УРАВНЕНИЯ ШРЕДИНГЕРА ДЛЯ ДВУМЕРНОГО ВОЛНОВОГО ВЕКТОРА. InterConf.

5. Muminov, I. A., Axmedov, B. B., & Sobirov, U. B. N. O. G. L. (2022). TURLI SIMMETRIYAGA EGA BO'LGAN QATTIQ JISMLAR KRISTALL PANJARASI. *Oriental renaissance: Innovative, educational, natural and social sciences*, 2(4), 541-546.

6. Muminov, I. A., Axmedov, B. B., & Maxmudov, A. A. O. G. L. (2022). YARIMO'TKAZGICH ASOSIDAGI TURLI STRUKTURALI NANOTRUBKALAR. Oriental renaissance: Innovative, educational, natural and social sciences, 2(4), 517-523.

7. Mamadaliyev, B., Rasulov, R. Y., Eshboltayev, I., Ahmedov, B. B., & Abdullayeov, M. (2014). About distribution of a potential barrier on borders of grains of the polycrystalline semiconductor. Europaische Fachhochschule, (9), 73-76.

8. Akhmedov, B. B., Rozikov, J. Y., & Muminov, I. A. MATERIAL'S ELECTRONIC STRUCTURE. Zbiór artykułów naukowych recenzowanych., 78.

9. Akhmedov, B., Rozikov, J., Muminov, I., & Ruziboev, V. (2018). ABOUT WAVEFUNCTIONS IN LOW-DIMENSIONAL SEMICONDUCTORS. Central Asian Problems of Modern Science and Education, 3(4), 51-57.

10. Расулов, Р. Я., Ахмедов, Б., & Мамадалиева, Н. (2018). Исследование размерного квантования в полупроводнике со сложной зоной методом теории возмущения. технологическое развитие науки: тенденции, проблемы и перспективы, 38-41.

11. Rozikov, J., Akhmedov, B., Muminov, I., & Ruziboev, V. (2019). DIMENSIONALLY QUANTIZED SEMICONDUCTOR STRUCTURES. Scientific Bulletin of Namangan State University, 1(6), 58-63.

12. Ахмедов, Б. Б., & Муминов, И. А. (2020). НЕПАРАБОЛИЧНОСТЬ ЭНЕРГЕТИЧЕСКИХ ЗОН. In WORLD SCIENCE: PROBLEMS AND INNOVATIONS (pp. 28-30).

13. РАСУЛОВ, В., РАЗИКОВ, Ж., КАРИМОВА, Г., АБДУБАНАНОВ, А., & ЭШБОЛТАЕВ, И. (2017). Расчет коэффициента прохождения электронов через многослойной полупроводниковой структуры, состоящей из прямоугольных потенциальных ям и барьеров. Современные научные исследования и разработки, (2), 183-185.

14. Sultanov, N. A., Rakhimov, E. T., Mirzajonov, Z., & Yusupov, F. T. (2021). Photoluminescence spectra of silicon doped with cadmium. Scientific-technical journal, 4(3), 22-26.

15. Nasirov, M. X., Axmadjonov, M. F., Nurmatov, O. R., & Abdullayev, S. (2021). O 'LCHAMLI KVANTLASHGAN STRUKTURALARDA KVAZIZARRALAR. Oriental renaissance: Innovative, educational, natural and social sciences, 1(11), 166-174.

16. Rasulov, V. R., Akhmedov, B. B., & Muminov, I. A. (2021). Interband one-and two-photon absorption of polarized light in narrow-gap crystals. Scientific-technical journal, 4(1), UDC-621.

17. Rasulov, R., Rasulov, V., & Eshboltaev, I. (2016). On the Theory of the Shift Linear Photovoltaic Effect in Semiconductors of Tetrahedral Symmetry Under Two-Photon Absorption. Russian Physics Journal, 59(1).

18. Rustamovich, R. V., Yavkachovich, R. R., Eshboltaev, I. M., Ahmedov, B., & Mamadaliyeva, N. Z. (2018). Investigation of dimensional quantization in a semiconductor with a complex zone by the perturbation theory method. European science review, (9-10-1), 253-255.