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ABSTRACT 

A crystal is composed of a periodic arrangement of atoms and molecules that 

vibrate around their equilibrium positions due to thermal motion at finite 

temperatures. When atoms are displaced from these positions, they experience a 

restoring force that follows Hooke's law and is proportional to the displacement. This 

study analyzes the vibrational dynamics of a one-dimensional lattice, where the 

atoms are modeled as masses connected by springs with a force constant. The motion 

of atoms in this system is governed by the equations of motion, and the resulting 

lattice vibrations are examined in the context of phase velocity, sound velocity, and 

Brillouin zones. The analysis is further extended to a lattice consisting of two 

different kinds of atoms, leading to the formation of distinct acoustic and optical 

modes. The dispersion relations and the role of wave vectors defined by cyclic 

boundary conditions are explored, with emphasis on the periodic nature of the ω-q 

curve and the significance of the first Brillouin zone. 

Keywords: Crystal lattice, lattice vibrations, Hooke's law, one-dimensional 

lattice, phase velocity, sound velocity, Brillouin zone, dispersion relation, wave 

vector, cyclic boundary conditions, acoustic mode, optical mode. 

INTRODUCTION 

A crystal consists of a periodic arrangement of atoms and molecules. However, 

the atoms or molecules of a crystal vibrate around the equilibrium positions at finite 

temperatures because of their thermal motion. When a atom is displaced from its 

equilibrium position, the atom is subject to a restorating force depending on the 

displacement. The restorating force follows Hooke's law and is proportional to the 

displacement. When each atom vibrates randomly, each atom suffers random forces 

and its vibration is immediately damped. On the other hand, if each atom vibrates 

with a small relative displacement from the neighboring atoms, then the vibration will 
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continue with its small vibration energy. For simplicity we consider the one-

dimensional lattice shown in Fig.1, where the mass of the atoms is  and the distance 

between the nearest neighbor atoms (lattice constant) at equilibrium is . We assume 

that the interatomic forces act on neighboring atoms only and that the atoms are 

connected to each other by a spring constant (force constant) . Defining the 

displacement of the atoms from their equilibrium positions by , 

, the equation of motion of th atom 

   (1) 

As stated above, when the displacement of each atom is independent, an atom 

will be subject to a strong force from the neighboring atoms and the 

 
Fig. 1. Displacement of atoms from their equilibrium positions (lattice vibration) 

displacement is damped. Therefore the lowest excitation energy of the lattice 

vibration corresponds to a wavelike displacement, keeping the displacement of 

neighboring atoms almost in phase, when we see neighboring atoms. In such a case 

we may write the solution of (1) as 

 

where  is the wave vector,  is the angular frequency,  is 

the velocity of sound, and  is wavelength. Inserting (2) into (1), we obtain 

 
From this we have following relation: 

 
When the wavelength is much longer than the lattice constant , the 

phase velocity  is given by 
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METHODS 

This result indicates that a lattice vibration with long wavelength has a constant 

phase velocity , which corresponds to the sound velocity. Figure 2 

shows the calculated curve from (4), where we see that the  curve is a periodic 

function with a period of . The whole dispersion curve is the repetition or 

displacement of the curve in the period , and thus this feature 

enables us to discuss lattice vibrations in that period. The region of the period is 

called the first Brillouin zone, and the second Brillouin zone is shown in Fig. 2. The 

second, third and other Brillouin zones are equivalent to the first Brillouin zone, 

which is shown in Sect. 1.4 in detail in connection with the reduced zone scheme. 

Where there are  atoms,  degrees of freedom of motion exist. Adopting cyclic 

boundary conditions we can define wave vectors by , where 

, giving rise to  values of the wave vectors. The above 

defined wave vectors are obtained from the cyclic boundary condition such that the 

displacement  of  is equivalent for  and . 

Next, we consider a lattice consisting of two kinds of atoms with masses  and 

. The atomic distance of the atoms of mass  is  and the same is true for the 

atoms . When the nearest-neighbor interaction is assumed, the equations of motion 

are written as in the case of the one-dimensional lattice stated above as 

 

 

Fig. 2. Dispersion curve of one-dimensional lattice vibration for the atoms  

and . We assume once again wave-type solutions of the same type as before. In 

addition we may expect another type of solution where atoms of even order and odd 

order are displaced in the reverse direction to each other, and thus atoms of even 
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order form a wave and odd order atoms form another wave. To satisfy these vibration 

types we express the displacement as 

 
Inserting these equations into (6), we obtain following relations: 

 
We easily find that the condition  correspond to all atoms at a 

standstill, and therefore we have to find solutions such that both  and  are not 

zero simultaneously. This condition is satisfied by requiring the determinant of the 

simultaneous equations with respect to  and  in (8) to be zero, giving rise to 

 
This equation is regarded as a quadratic equation with respect to , and the 

solutions  and  are given by 

 
It is evident from (10b) and (10b) that and approach zero and a constant 

not equal to zero as . Taking account of the fact that the 

 
Fig. 3. Angular frequency versus wave vector relations for the two vibration 

modes of a lattice consisting of two kinds of atoms angular frequency is positive, 

and are plotted as a function of the wave vector  for several values of 

 as a parameter in Fig. 3, where we define . Let us 

consider the two branches  and inthe long wavelength limit. For 

 and (10b) lead us to the following results: 
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RESULTS 

When we put , the branch gives the same result as a lattice 

consisting of one kind of atom, corresponding to a sound wave, and thus called the 

acoustic branch, the acoustic mode of vibrations or the acoustic phonon. Since the 

acoustic branch satisfies the condition , the neighboring atoms move in the 

same direction and thus the relative displacement is zero in the long wavelength limit. 

On the other hand, the branch satisfies  and thus different 

atoms are displaced in the opposite directions to each other, resulting in zero of the 

center of mass motion. The branch exhibits a relative displacement between the 

different atoms and induces an electric field when the atoms are ionic. The induced 

electric field interacts strongly with the external electromagnetic field and absorbs the 

external waves. This often occurs in the infrared region, leading to it to be called the 

optical branch, optical mode of lattice vibrations or the optical phonon. Figure 6.4 

shows a schematic illustration of the atomic displacement for (a) the acoustic mode 

(acoustic phonon) and (b) the optical mode (optical phonon), where we see the 

difference in the displacement between the two modes of lattice vibrations. 

 
Fig. 4. Schematic illustration of two types of lattice vibrations: (a) acoustic 

mode (acoustic phonon) and (b) optical mode (optical phonon)  



 

Oriental Renaissance: Innovative, 

educational, natural and social sciences 

(E)ISSN: 2181-1784 

4(8), Sep., 2024 

Research BIB   /  Index Copernicus www.oriens.uz 
 

272 
 

The acoustic mode in the limit of  gives the following relation: 

 
and thus the sound velocity (phase velocity) is given by 

 
which corresponds to (5). 

DISCUSSION 

In ionic crystals unusual reflectivity has been observed in the infrared 

wavelength region of . For example, the reflectivity of NaCl exhibits 

maxima around  and , where the angular frequencies of light for the 

corresponding wavelengths are  and their wave vectors 

are , which are much smaller than the wave vector at the 

Brillouin zone edge . From the energy and momentum conservation 

rules, such high energy excitation in the small wave vector region is easily found to 

correspond to the optical phonon branch . 

In general, as stated previously, the optical mode of lattice vibration appears in a 

crystal with two or more atoms in a unit cell. Since there exist one longitudinal and 

two transverse acoustic modes, a crystal with  atoms in a unit cell gives rise to 

 optical modes of lattice vibration. 
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